Kevin’s review paper on Entropic, enthalpic and kinetic aspects of interfacial nanocrystal superlattice assembly and attachment now in press

Kevin’s review paper titled “Entropic, enthalpic and kinetic aspects of interfacial nanocrystal superlattice assembly and attachment” is now available: http://pubs.acs.org/doi/10.1021/acs.chemmater.7b04223

The directed assembly of nanoscale building blocks into complex superstructures is of widespread scientific and technological interest. Scientists and engineers have been intrigued by the prospects of tailoring self-assembly processes to create materials whose properties and function can be tuned through the interaction between constituent particles. In particular, Recent reports of epitaxially connected CQD superlattices with long-range atomic coherence have generated significant interest as a platform for novel, quasi 2D ‘designer materials’.

The coupled thermodynamic and kinetic principles governing the interfacial nanoparticle self-assembly and directed attachment present a rich, albeit complex scientific problem. In the enclosed manuscript, we describe the interesting interplay of entropic and enthalpic driving forces and the kinetic aspects of interfacial self-assembly and attachment. We present in-situ grazing incidence X-ray scattering measurements and emerging insights into the complex choreography of interfacial transport processes involved in the formation of highly ordered epitaxially connected nanocrystal solids. New understanding emerging from in-situ measurements provides process control and design principles for the selective formation of specific superlattice polymorphs. We discuss outstanding challenges that must be resolved to translate know-how from controlled assembly and attachment in the laboratory to scalable integration for emerging technological applications.

Bookmark the permalink.

Comments are closed