Jen-Yu’s paper (with Tangi Aubert, Wiesner group) on 3D printing in Nature Communications

Congratulations to Jen-Yu and the rest of the ream for publishing their work on Porous cage-derived nanomaterial inks for direct and internal three-dimensional printing  in Nature Communications. (https://www.nature.com/collections/wdzvyhgxft/content/johannes-kreutzer)

The convergence of 3D printing techniques and nanomaterials is generating a compelling opportunity space to create advanced materials with multiscale structural control and hierarchical functionalities. While most nanoparticles consist of a dense material, less attention has been paid to 3D printing of nanoparticles with intrinsic porosity. Here, we combine ultrasmall (about 10 nm) silica nanocages with digital light processing technique for the direct 3D printing of hierarchically porous parts with arbitrary shapes, as well as tunable internal structures and high surface area. Thanks to the versatile and orthogonal cage surface modifications, we show how this approach can be applied for the implementation and positioning of functionalities throughout 3D printed objects. Furthermore, taking advantage of the internal porosity of the printed parts, an internal printing approach is proposed for the localized deposition of a guest material within a host matrix, enabling complex 3D material designs.

Bookmark the permalink.

Comments are closed